Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Phys Imaging Radiat Oncol ; 29: 100555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405431

RESUMO

Background and Purpose: Hippocampal-sparing (HS) is a method that can potentially reduce late cognitive complications for pediatric medulloblastoma (MB) patients treated with craniospinal proton therapy (PT). The aim of this study was to investigate robustness and dosimetric plan verification of pencil beam scanning HS PT. Materials and Methods: HS and non-HS PT plans for the whole brain part of craniospinal treatment were created for 15 pediatric MB patients. A robust evaluation of the plans was performed. Plans were recalculated in a water phantom and measured field-by-field using an ion chamber detector at depths corresponding to the central part of hippocampi. All HS and non-HS fields were measured with the standard resolution of the detector and in addition 16 HS fields were measured with high resolution. Measured and planned dose distributions were compared using gamma evaluation. Results: The median mean hippocampus dose was reduced from 22.9 Gy (RBE) to 8.9 Gy (RBE), while keeping CTV V95% above 95 % for all nominal HS plans. HS plans were relatively robust regarding hippocampus mean dose, however, less robust regarding target coverage and maximum dose compared to non-HS plans. For standard resolution measurements, median pass rates were 99.7 % for HS and 99.5 % for non-HS plans (p < 0.001). For high-resolution measurements, median pass rates were 100 % in the hippocampus region and 98.2 % in the surrounding region. Conclusions: A substantial reduction of dose in the hippocampus region appeared feasible. Dosimetric accuracy of HS plans was comparable to non-HS plans and agreed well with planned dose distribution in the hippocampus region.

2.
Child Neuropsychol ; 30(1): 22-44, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36744788

RESUMO

Survivors of Pediatric Brain Tumors (PBTs) treated with cranial radiation therapy (CRT) often experience a decline in neurocognitive test scores. Less is known about the neurocognitive development of non-irradiated survivors of PBTs. The aim of this study was to statistically model neurocognitive development after PBT in both irradiated and non-irradiated survivors and to find clinical variables associated with the rate of decline in neurocognitive scores. A total of 151 survivors were included in the study. Inclusion criteria: Diagnosis of PBT between 2001 and 2013 or earlier diagnosis of PBT and turning 18 years of age between 2006 and 2013. Exclusion criteria: Death within a year from diagnosis, neurocutaneous syndromes, severe intellectual disability. Clinical neurocognitive data were collected retrospectively from medical records. Multilevel linear modeling was used to evaluate the rate of decline in neurocognitive measures and factors associated with the same. A decline was found in most measures for both irradiated and non-irradiated survivors. Ventriculo-peritoneal (VP) shunting and treatment with whole-brain radiation therapy (WBRT) were associated with a faster decline in neurocognitive scores. Male sex and supratentorial lateral tumor were associated with lower scores. Verbal learning measures were either stable or improving. Survivors of PBTs show a pattern of decline in neurocognitive scores irrespective of treatment received, which suggests the need for routine screening for neurocognitive rehabilitation. However, survivors treated with WBRT and/or a VP shunt declined at a faster rate and appear to be at the highest risk of negative neurocognitive outcomes and to have the greatest need for neurocognitive rehabilitation.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Masculino , Neoplasias Encefálicas/psicologia , Estudos Retrospectivos , Irradiação Craniana , Sobreviventes
3.
Front Oncol ; 13: 1256760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766866

RESUMO

Background: FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods: Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results: Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion: This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.

4.
Acta Oncol ; 62(4): 391-399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37203198

RESUMO

INTRODUCTION: Proton radiation therapy (PT) has become a treatment option alongside photon therapy (XRT) for lower-grade gliomas (LGG). In this single-institution retrospective study, we investigate the patient characteristics and treatment outcomes, including pseudo-progression (PsP), for LGG patients selected for PT. METHOD: Adult patients with grade 2-3 glioma consecutively treated with radiotherapy (RT) from May 2012 to December 2019 were retrospectively included in this cohort study. Tumor characteristics and treatment data were collected. The groups treated with PT and XRT were compared regarding treatment characteristics, side effects, occurrence of PsP, and survival outcomes. PsP was defined as new or growing lesions followed by either decrease or stabilization during a 12 month-period with no treatment. RESULTS: Out of 143 patients meeting the inclusion criteria, 44 were treated with PT, 98 with XRT and one with mixed PT + XRT. The patients receiving PT were younger, had a lower tumor grade, more oligodendrogliomas and received a lower mean brain and brainstem dose. PsP was observed in 21 out of 126 patients, with no difference between XRT and PT (p = .38). The rate of fatigue in immediate connection to RT (zero to three months after) was higher for XRT than for PT (p = .016). The PT patients had a significantly better PFS and OS than the XRT patients (p = .025 and .035), but in multivariate analysis radiation modality was non-significant. Higher average dose to both brain and brainstem was associated with inferior PFS and OS (p < .001). Median follow-up time were 69 months and 26 months for XRT and PT patients, respectively. CONCLUSION: Contrary to previous studies, there was no difference in risk of PsP for XRT and PT. PT was associated with lower rates of fatigue <3 months after RT. The superior survival outcomes for PT indicates that the patients with the best prognosis were referred to PT.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia com Prótons , Adulto , Humanos , Terapia com Prótons/efeitos adversos , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Estudos de Coortes , Glioma/radioterapia , Glioma/patologia
5.
Radiother Oncol ; 184: 109663, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059335

RESUMO

BACKGROUND AND PURPOSE: Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS: The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS: Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS: The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.


Assuntos
Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Planejamento da Radioterapia Assistida por Computador/métodos , Fracionamento da Dose de Radiação
6.
Acta Oncol ; 62(2): 134-140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36847433

RESUMO

BACKGROUND AND PURPOSE: Hippocampus is a central component for neurocognitive function and memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation (CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive impairment with the risk of reduced tumor control. MATERIAL AND METHODS: For this dose planning study, a total of 504 hippocampal sparing intensity modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal mean doses and normal tissue complication probability estimates. RESULTS: The median mean dose to the hippocampus could be reduced from 31.3 GyRBE to 7.3 GyRBE (p < .001), though 20% of these plans were not considered clinically acceptable as they failed one or more acceptance criterion. Reducing the median mean hippocampus dose to 10.6 GyRBE was possible with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%, 62.1% and 51.1% to 41.0% (p < .001), 20.1% (p < .001) and 29.9% (p < .001) for task efficiency, organization and memory, respectively. Estimated tumor control probability was not adversely affected by HS-IMPT, ranging from 78.5 to 80.5% for all plans. CONCLUSIONS: We present estimates of potential clinical benefit in terms of neurocognitive impairment and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally compromising target coverage locally using HS-IMPT.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Criança , Prótons , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Hipocampo/efeitos da radiação , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos , Dosagem Radioterapêutica
7.
Radiat Oncol ; 17(1): 114, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765038

RESUMO

BACKGROUND: Delineation of organs at risk (OAR) for anal cancer radiation therapy treatment planning is a manual and time-consuming process. Deep learning-based methods can accelerate and partially automate this task. The aim of this study was to develop and evaluate a deep learning model for automated and improved segmentations of OAR in the pelvic region. METHODS: A 3D, deeply supervised U-Net architecture with shuffle attention, referred to as Pelvic U-Net, was trained on 143 computed tomography (CT) volumes, to segment OAR in the pelvic region, such as total bone marrow, rectum, bladder, and bowel structures. Model predictions were evaluated on an independent test dataset (n = 15) using the Dice similarity coefficient (DSC), the 95th percentile of the Hausdorff distance (HD95), and the mean surface distance (MSD). In addition, three experienced radiation oncologists rated model predictions on a scale between 1-4 (excellent, good, acceptable, not acceptable). Model performance was also evaluated with respect to segmentation time, by comparing complete manual delineation time against model prediction time without and with manual correction of the predictions. Furthermore, dosimetric implications to treatment plans were evaluated using different dose-volume histogram (DVH) indices. RESULTS: Without any manual corrections, mean DSC values of 97%, 87% and 94% were found for total bone marrow, rectum, and bladder. Mean DSC values for bowel cavity, all bowel, small bowel, and large bowel were 95%, 91%, 87% and 81%, respectively. Total bone marrow, bladder, and bowel cavity segmentations derived from our model were rated excellent (89%, 93%, 42%), good (9%, 5%, 42%), or acceptable (2%, 2%, 16%) on average. For almost all the evaluated DVH indices, no significant difference between model predictions and manual delineations was found. Delineation time per patient could be reduced from 40 to 12 min, including manual corrections of model predictions, and to 4 min without corrections. CONCLUSIONS: Our Pelvic U-Net led to credible and clinically applicable OAR segmentations and showed improved performance compared to previous studies. Even though manual adjustments were needed for some predicted structures, segmentation time could be reduced by 70% on average. This allows for an accelerated radiation therapy treatment planning workflow for anal cancer patients.


Assuntos
Neoplasias do Ânus , Órgãos em Risco , Neoplasias do Ânus/radioterapia , Atenção , Humanos , Redes Neurais de Computação , Pelve , Semântica
8.
Phys Imaging Radiat Oncol ; 19: 112-119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34401537

RESUMO

BACKGROUND AND PURPOSE: Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer patients. MATERIALS AND METHODS: A modified U-Net was trained on triplets, a combination of three consecutive image slices and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 17 test patients were transformed into deliverable treatment plans using a novel planning workflow. RESULTS: The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target volume (CTV) CTV_D100%, planning target volume (PTV) PTV_D98%, PTV_D95% and organs at risk (OAR) respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT dose distributions was within 4.4%. The difference between the baseline model and our improved model was statistically significant (p < 0.05) for CVT_D100%, PTV_D98% and PTV_D95%. CONCLUSION: Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose predictions were successfully transformed into deliverable treatment plans using our proposed treatment planning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy and improve the overall treatment speed and plan quality.

9.
Front Oncol ; 11: 658004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055624

RESUMO

FLASH radiotherapy has emerged as a treatment technique with great potential to increase the differential effect between normal tissue toxicity and tumor response compared to conventional radiotherapy. To evaluate the feasibility of FLASH radiotherapy in a relevant clinical setting, we have commenced a feasibility and safety study of FLASH radiotherapy in canine cancer patients with spontaneous superficial solid tumors or microscopic residual disease, using the electron beam of our modified clinical linear accelerator. The setup for FLASH radiotherapy was established using a short electron applicator with a nominal source-to-surface distance of 70 cm and custom-made Cerrobend blocks for collimation. The beam was characterized by measuring dose profiles and depth dose curves for various field sizes. Ten canine cancer patients were included in this initial study; seven patients with nine solid superficial tumors and three patients with microscopic disease. The administered dose ranged from 15 to 35 Gy. To ensure correct delivery of the prescribed dose, film measurements were performed prior to and during treatment, and a Farmer-type ion-chamber was used for monitoring. Treatments were found to be feasible, with partial response, complete response or stable disease recorded in 11/13 irradiated tumors. Adverse events observed at follow-up ranging from 3-6 months were mild and consisted of local alopecia, leukotricia, dry desquamation, mild erythema or swelling. One patient receiving a 35 Gy dose to the nasal planum, had a grade 3 skin adverse event. Dosimetric procedures, safety and an efficient clincal workflow for FLASH radiotherapy was established. The experience from this initial study will be used as a basis for a veterinary phase I/II clinical trial with more specific patient inclusion selection, and subsequently for human trials.

10.
Med Phys ; 48(5): e44-e64, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33260251

RESUMO

The era of real-time radiotherapy is upon us. Robotic and gimbaled linac tracking are clinically established technologies with the clinical realization of couch tracking in development. Multileaf collimators (MLCs) are a standard equipment for most cancer radiotherapy systems, and therefore MLC tracking is a potentially widely available technology. MLC tracking has been the subject of theoretical and experimental research for decades and was first implemented for patient treatments in 2013. The AAPM Task Group 264 Safe Clinical Implementation of MLC Tracking in Radiotherapy Report was charged to proactively provide the broader radiation oncology community with (a) clinical implementation guidelines including hardware, software, and clinical indications for use, (b) commissioning and quality assurance recommendations based on early user experience, as well as guidelines on Failure Mode and Effects Analysis, and (c) a discussion of potential future developments. The deliverables from this report include: an explanation of MLC tracking and its historical development; terms and definitions relevant to MLC tracking; the clinical benefit of, clinical experience with and clinical implementation guidelines for MLC tracking; quality assurance guidelines, including example quality assurance worksheets; a clinical decision pathway, future outlook and overall recommendations.


Assuntos
Radioterapia (Especialidade) , Robótica , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Sci Adv ; 6(34): eabb5353, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875113

RESUMO

Diagnostic imaging often outperforms the surgeon's ability to identify small structures during therapeutic procedures. Smart soft tissue markers that translate the sensitivity of diagnostic imaging into optimal therapeutic intervention are therefore highly warranted. This paper presents a unique adaptable liquid soft tissue marker system based on functionalized carbohydrates (Carbo-gel). The liquid state of these markers allows for high-precision placement under image guidance using thin needles. Based on step-by-step modifications, the image features and mechanical properties of markers can be optimized to bridge diagnostic imaging and specific therapeutic interventions. The performance of Carbo-gel is demonstrated for markers that (i) have radiographic, magnetic resonance, and ultrasound visibility; (ii) are palpable and visible; and (iii) are localizable by near-infrared fluorescence and radio guidance. The study demonstrates encouraging proof of concept for the liquid marker system as a well-tolerated multimodal imaging marker that can improve image-guided radiotherapy and surgical interventions, including robotic surgery.


Assuntos
Marcadores Fiduciais , Radioterapia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Agulhas , Imagens de Fantasmas , Radioterapia Guiada por Imagem/métodos
12.
Radiat Oncol ; 15(1): 149, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522233

RESUMO

BACKGROUND: Optimal alignment is of utmost importance when treating pediatric patients with craniospinal irradiation (CSI), especially with regards to field junctions and multiple isocenters and techniques applying high dose gradients. Here, we investigated the setup errors and uncertainties for pediatric CSI using different setup verification protocols. METHODS: A total of 38 pediatric patients treated with CSI were identified for whom treatment records and setup images were available. The setup images were registered retrospectively to the reference image using an automated tool and matching on bony anatomy, subsequently, the impact of different correction protocols was simulated. RESULTS: For an action-level (AL)-protocol and a non-action level (NAL)-protocol, the translational residual setup error can be as large as 24 mm for an individual patient during a single fraction, and the rotational error as large as 6.1°. With daily IGRT, the maximum setup errors were reduced to 1 mm translational and 5.4° rotational versus 1 mm translational and 2.4° rotational for 3- and 6- degrees of freedom (DoF) couch shifts, respectively. With a daily 6-DoF IGRT protocol for a wide field junction irradiation technique, the residual positioning uncertainty was below 1 mm and 1° for translational and rotational directions, respectively. The largest rotational uncertainty was found for the patients' roll even though this was the least common type of rotational error, while the largest translational uncertainty was found in the patients' anterior-posterior-axis. CONCLUSIONS: These results allow for informed margin calculation and robust optimization of treatments. Daily IGRT is the superior choice for setup of pediatric patients treated with CSI, although centers that do not have this option could use the results presented here to improve their margins and uncertainty estimates for a more accurate treatment alignment.


Assuntos
Neoplasias do Sistema Nervoso Central/radioterapia , Radiação Cranioespinal/métodos , Erros de Configuração em Radioterapia , Radioterapia Guiada por Imagem/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Posicionamento do Paciente/métodos , Incerteza , Adulto Jovem
13.
Int J Radiat Oncol Biol Phys ; 107(4): 747-755, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32275996

RESUMO

PURPOSE: The accuracy of analytical dose calculations (ADC) and dose uncertainties resulting from anatomical changes are both limiting factors in proton therapy. For the latter, rapid plan adaption is necessary; for the former, Monte Carlo (MC) approaches are increasingly recommended. These, however, are inherently slower than analytical approaches, potentially limiting the ability to rapidly adapt plans. Here, we compare the clinical relevance of uncertainties resulting from both. METHODS AND MATERIALS: Five patients with non-small cell lung cancer with up to 9 computed tomography (CT) scans acquired during treatment and five paranasal (head and neck) patients with 10 simulated anatomical changes (sinus filling) were analyzed. On the initial planning CT scans, treatment plans were optimized and calculated using an ADC and then recalculated with MC. Additionally, all plans were recalculated (non-adapted) and reoptimized (adapted) on each repeated CT using the same ADC as for the initial plan, and the resulting dose distributions were compared. RESULTS: When comparing analytical and MC calculations in the initial treatment plan and averaged over all patients, 94.2% (non-small cell lung cancer) and 98.5% (head and neck) of voxels had differences <±5%, and only minor differences in clinical target volume (CTV) V95 (average <2%) were observed. In contrast, when recalculating nominal plans on the repeat (anatomically changed) CT scans, CTV V95 degraded by up to 34%. Plan adaption, however, restored CTV V95 differences between adapted and nominal plans to <0.5%. Adapted organ-at-risk doses remained the same or improved. CONCLUSIONS: Dose degradations caused by anatomic changes are substantially larger than uncertainties introduced by the use of analytical instead of MC dose calculations. Thus, if the use of analytical calculations can enable more rapid and efficient plan adaption than MC approaches, they can and should be used for plan adaption for these patient groups.


Assuntos
Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Dosagem Radioterapêutica
14.
Oncologist ; 25(3): 210-e422, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32162821

RESUMO

LESSONS LEARNED: It is possible to plan and treat some patients with stereotactic body radiotherapy (SBRT) in a timely fashion in an acute setting. Advanced and, in some indications, already implemented technologies such as SBRT are difficult to test in a randomized trial. BACKGROUND: Stereotactic body radiotherapy (SBRT) in metastatic spinal cord compression (MSCC) could be an alternative to decompressive surgery followed by fractionated radiotherapy. METHODS: In a randomized, single-institution, noninferiority trial, patients with MSCC were assigned to stereotactic body radiotherapy of 16 Gy in 1 fraction or decompression surgery followed by fractionated radiotherapy of 30 Gy in 10 fractions. Primary endpoint was ability to walk by EQ5D-5L questionnaire. Based on power calculations, 130 patients had to be included to be 89% sure that a 15% difference between the treatment arm and the experimental arm could be detected. RESULTS: Ten patients were accrued in 23 months, with six patients allocated to surgery and four patients to stereotactic body radiotherapy. The trial was closed prematurely because of poor accrual. One patient undergoing surgery and one patient undergoing stereotactic body radiotherapy were unable to walk at 6 weeks. Two patients were not evaluable at 6 weeks. CONCLUSION: A randomized, phase II, clinical trial comparing surgery followed by fractionated radiotherapy or image-guided SBRT of MSCC was initiated. SBRT was shown to be feasible, with three out of four patients retaining walking function. The trial was determined futile as a result of low accrual.


Assuntos
Radiocirurgia , Compressão da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/efeitos adversos , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/radioterapia , Compressão da Medula Espinal/cirurgia , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia , Resultado do Tratamento , Caminhada
15.
Radiother Oncol ; 141: 5-13, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668515

RESUMO

Use of image-guided radiation therapy (IGRT) helps to account for daily prostate position changes during radiation therapy for prostate cancer. However, guidelines for the use of IGRT are scarce. An ESTRO panel consisting of leading radiation oncologists and medical physicists was assembled to review the literature and formulate a consensus guideline of methods and procedure for IGRT in prostate cases. Advanced methods and procedures are also described which the committee judged relevant to further improve clinical practice. Moreover, ranges for margins for the three most popular IGRT scenarios have been suggested as examples.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Consenso , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Movimento , Próstata/diagnóstico por imagem , Próstata/fisiopatologia , Neoplasias da Próstata/diagnóstico por imagem , Radiografia/métodos , Radioterapia Guiada por Imagem/normas , Glândulas Seminais/diagnóstico por imagem , Glândulas Seminais/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
16.
Med Image Anal ; 54: 220-237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952038

RESUMO

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Humanos , Processamento de Imagem Assistida por Computador
17.
Radiother Oncol ; 136: 130-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015114

RESUMO

INTRODUCTION: In this study we investigate the risk of radiation-induced serious adverse event of the spine in a large cohort of consecutive retreated patients with palliative radiotherapy (RT) for metastatic cancer in the spine. METHODS AND MATERIALS: From 2010 to 2014, 2387 patients received spinal irradiation with a palliative intent for metastatic spinal cord compression at our institution. The patients were reviewed for prior RT and 220 patients had received re-irradiation of the spine. Clinical and treatment data were obtained from the patients' records and the RT planning system. RESULTS: Patients had metastatic disease from breast, prostate, lung, hematological or other cancers (22.7%, 21.8%, 21.4%, 3.2% and 30.9%, respectively). Median follow-up was 99 days. Median cumulative EQD2 was 57.6 Gy2; range: 20.0-90.0 Gy. Spinal events related to re-irradiation were observed in fourteen patients; six patients were diagnosed with radiation-induced myelopathy (RIM) and nine patients with radiation-induced vertebral fracture (RIF). In a multivariate analysis, diabetes was related to increased risk of toxicity (HR = 7.9; P = 0.003). CONCLUSION: The incidence of RIM and RIF (6 and 9 out of 220 patients, respectively) was low in our cohort of re-irradiated patients. Patients with diabetes had a higher risk of adverse events which should be considered before re-irradiation of the spine.


Assuntos
Complicações do Diabetes/etiologia , Reirradiação/efeitos adversos , Neoplasias da Coluna Vertebral/radioterapia , Coluna Vertebral/efeitos dos fármacos , Idoso , Feminino , Humanos , Masculino , Lesões por Radiação/etiologia , Risco , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/secundário
18.
Clin Transl Radiat Oncol ; 15: 93-98, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30815592

RESUMO

BACKGROUND: The purpose of this study was to examine the occurrence of cerebral infarction (ischemic stroke), in a large combined cohort of patients with anterior skull base meningiomas, pituitary adenomas and craniopharyngiomas, after fractionated stereotactic radiation therapy (FSRT). MATERIAL AND METHODS: All patients, 18 years and older, with anterior skull base meningiomas, pituitary adenomas and craniopharyngiomas, treated with fractionated stereotactic radiation, in our center, from January 1999 to December 2015 were identified. In total 169 patients were included. The prescription dose to the tumor was 54 Gy for 164 patients (97%) and 46.0-52.2 Gy for 5 patients (3%). Cases of cerebral infarctions subsequent to FSRT were identified from the Danish National Patient Registry and verified with review of case notes. The rate of cerebral infarction after FSRT was compared to the rate in the general population with a one sample t-test after standardization for age and year. We explored if age, sex, disease type, radiation dose and dose per fraction was associated with increased risk of cerebral infarction using univariate Cox models. RESULTS: At a median follow-up of 9.3 years (range 0.1-16.5), 7 of the 169 patients (4.1%) developed a cerebral infarction, at a median 5.7 years (range 1.2-11.5) after FSRT. The mean cerebral infarction rate for the general population was 0.0035 and 0.0048 for the FSRT cohort (p = 0.423). Univariate cox models analysis showed that increasing age correlated significantly with the cerebral infarction risk, with a hazard ratio of 1.090 (p = 0.013). CONCLUSION: Increased risk of cerebral infarction after FSRT of anterior skull base tumors was associated with age, similar to the general population. Our study revealed that FSRT did not introduce an excess risk of cerebral infarction.

19.
J Nucl Med ; 60(8): 1053-1058, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30683767

RESUMO

Complete resection is the treatment of choice for most pediatric brain tumors, but early postoperative MRI for detection of residual tumor may be misleading because of MRI signal changes caused by the operation. PET imaging with amino acid tracers in adults increases the diagnostic accuracy for brain tumors, but the literature in pediatric neurooncology is limited. A hybrid PET/MRI system is highly beneficial in children, reducing the number of scanning procedures, and this is to our knowledge the first larger study using PET/MRI in pediatric neurooncology. We evaluated if additional postoperative 18F-fluoro-ethyl-tyrosine (18F-FET) PET in children and adolescents would improve diagnostic accuracy for the detection of residual tumor as compared with MRI alone and would assist clinical management. Methods: Twenty-two patients (7 male; mean age, 9.5 y; range, 0-19 y) were included prospectively and consecutively in the study and had 27 early postoperative 18F-FET PET exams performed preferentially in a hybrid PET/MRI system (NCT03402425). Results: Using follow-up (93%) or reoperation (7%) as the reference standard, PET combined with MRI discriminated tumor from treatment effects with a lesion-based sensitivity/specificity/accuracy (95% confidence intervals) of 0.73 (0.50-1.00)/1.00 (0.74-1.00)/0.87 (0.73-1.00) compared with MRI alone: 0.80 (0.57-1.00)/0.75 (0.53-0.94)/0.77 (0.65-0.90); that is, the specificity for PET/MRI was 1.00 as compared with 0.75 for MRI alone (P = 0.13). In 11 of 27 cases (41%), results from the 18F-FET PET scans added relevant clinical information, including one scan that directly influenced clinical management because an additional residual tumor site was identified. 18F-FET uptake in reactive changes was frequent (52%), but correct interpretation was possible in all cases. Conclusion: The high specificity for detecting residual tumor suggests that supplementary 18F-FET PET is relevant in cases where reoperation for residual tumor is considered.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Neoplasias da Medula Espinal/diagnóstico por imagem , Adolescente , Astrocitoma/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Feminino , Fluordesoxiglucose F18 , Seguimentos , Glioma/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Masculino , Imagem Multimodal , Neoplasia Residual/diagnóstico por imagem , Pediatria , Período Pós-Operatório , Estudos Prospectivos , Reoperação , Reprodutibilidade dos Testes , Tumor Rabdoide/diagnóstico por imagem , Sensibilidade e Especificidade , Neoplasias da Medula Espinal/cirurgia , Teratoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
20.
Eur J Nucl Med Mol Imaging ; 46(3): 603-613, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30276440

RESUMO

BACKGROUND: Recurrence in glioblastoma patients often occur close to the original tumour and indicates that the current treatment is inadequate for local tumour control. In this study, we explored the feasibility of using multi-modality imaging at the time of radiotherapy planning. Specifically, we aimed to identify parameters from pre-treatment PET and MRI with potential to predict tumour recurrence. MATERIALS AND METHODS: Sixteen patients were prospectively recruited and treated according to established guidelines. Multi-parametric imaging with 18F-FET PET/CT and 18F-FDG PET/MR including diffusion and dynamic contrast enhanced perfusion MRI were performed before radiotherapy. Correlations between imaging parameters were calculated. Imaging was related to the voxel-wise outcome at the time of tumour recurrence. Within the radiotherapy target, median differences of imaging parameters in recurring and non-recurring voxels were calculated for contrast-enhancing lesion (CEL), non-enhancing lesion (NEL), and normal appearing grey and white matter. Logistic regression models were created to predict the patient-specific probability of recurrence. The most important parameters were identified using standardized model coefficients. RESULTS: Significant median differences between recurring and non-recurring voxels were observed for FDG, FET, fractional anisotropy, mean diffusivity, mean transit time, extra-vascular, extra-cellular blood volume and permeability derived from scans prior to chemo-radiotherapy. Tissue-specific patterns of voxel-wise correlations were observed. The most pronounced correlations were observed for 18F-FDG- and 18F-FET-uptake in CEL and NEL. Voxel-wise modelling of recurrence probability resulted in area under the receiver operating characteristic curve of 0.77 from scans prior to therapy. Overall, FET proved to be the most important parameter for recurrence prediction. CONCLUSION: Multi-parametric imaging before radiotherapy is feasible and significant differences in imaging parameters between recurring and non-recurring voxels were observed. Combining parameters in a logistic regression model enabled patient-specific maps of recurrence probability, where 18F-FET proved to be most important. This strategy could enable risk-adapted radiotherapy planning.


Assuntos
Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Estudos de Viabilidade , Feminino , Fluordesoxiglucose F18 , Glioblastoma/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Probabilidade , Planejamento da Radioterapia Assistida por Computador , Recidiva , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...